Karen Timberlake

# CHEMISTRY 

Thirteenth Edition, Global Edition

## Chapter 3

Matter and Energy
(Lecture PPTs)

## Chapter 3 Matter and Energy

Dietitians specialize in helping individuals learn about good nutrition and the need for a balanced diet


### 3.1 Classification of Matter



Learning Goal Classify examples of matter as pure substances or mixtures.

## Classification of Matter

Matter is anything that has mass and occupies space. It makes up all things we use, such as

- water;
- wood; and
- plastic bags.

We can classify matter according to its composition:

- Pure substances have a fixed or definite composition.
- Mixtures contain two or more different substances that are physically mixed but not chemically combined.


## Classification of Matter



## Pure Substances: Elements and Compounds

A pure substance is classified as

- a type of matter with a fixed or definite composition
- an element that is composed of one type of atom
- a compound that is composed of two or more elements always combined in the same proportion


An aluminum can consists of many atoms of aluminum.

## Elements

Elements are pure substances that contain only one type of
material, such as

## Elements

- copper, Cu
- lead, Pb
- aluminum, Al


Copper

The element copper consists of copper atoms.

## Compounds

A compound consists of two or more elements chemically combined in a definite ratio, such as

- hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$
- table salt ( NaCl )
- sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$
- water $\left(\mathrm{H}_{2} \mathrm{O}\right)$


Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, consists of two atoms of hydrogen (white) for every two atoms of oxygen (red).

## Compounds Contain Elements

"Table salt" is a compound that contains the elements sodium and chlorine.


The decomposition of salt, NaCl , produces the elements sodium and chlorine.

## Mixtures

A mixture is a type of matter that consists of

- two or more substances that are physically mixed, but not chemically combined
- two or more substances in different proportions that can be separated by physical methods


A mixture of spaghetti and water is separated using a strainer, a physical method of separation.

## Laboratory Separation of Mixtures


(a) A mixture of a liquid and a solid is separated by filtration.
(b) Different substances are separated as they travel at different rates up the surface of chromatography paper.

## Homogeneous Mixtures

## In a homogeneous mixture,

- the composition is uniform throughout the sample
- the different parts of the mixture are not visible

Brass is a homogeneous mixture of copper and

## Homogeneous

 zinc atoms.

## Scuba Breathing Mixtures

Breathing mixtures for scuba are homogeneous mixtures.
Some examples are

- nitrox (oxygen and nitrogen gases)
- heliox (oxygen and helium gases)
- trimix (oxygen, helium, and nitrogen gases)


A nitrox mixture is used to fill scuba tanks.

## Heterogeneous Mixtures

In a heterogeneous mixture,

- the composition varies from one part of the mixture to another
- the different parts of the mixture are visible


## Heterogeneous



Copper metal and water form a heterogeneous mixture.

## Learning Check

Identify each of the following as a pure substance or a mixture:
A. pasta and tomato sauce
B. aluminum foil
C. helium
D. air

## Solution

Identify each of the following as a pure substance or a mixture:
A. pasta and tomato sauce
B. aluminum foil
C. helium
D. air
mixture
pure substance pure substance mixture

## Learning Check

Identify each of the following as a homogeneous or heterogeneous mixture:
A. hot fudge sundae
B. baby shampoo
C. sugar water
D. peach pie

## Solution

Identify each of the following as a homogeneous or heterogeneous mixture:
A. hot fudge sundae
B. baby shampoo
C. sugar water
D. peach pie
heterogeneous mixture
homogeneous mixture
homogeneous mixture
heterogeneous mixture

### 3.2 States and Properties of Matter

Matter on Earth exists in one of three physical states: solid, liquid, or gas.


Learning Goal Identify the states and physical and chemical properties of matter.

## Solids

Solids have

- a definite shape
- a definite volume
- particles are held close together by strong attractive forces
- particles are arranged in a rigid pattern and can only vibrate slowly in fixed positions



## Liquids

## Liquids have

- a definite volume, but not a definite shape
- the same shape as their container
- particles that move slowly in random directions



## Gases

## Gases have

- an indefinite shape
- an indefinite volume
- the same shape and volume as their container
- particles that are far apart, move at high speeds, and have little attraction to each other


A gas takes the shape and volume of its container.

## Physical States of Matter

table 3.1 A Comparison of Solids, Liquids, and Gases

| Characteristic | Solid | Liquid | Gas |
| :--- | :--- | :--- | :--- |
| Shape | Has a definite shape | Takes the shape of the container | Takes the shape of the container |
| Volume | Has a definite volume | Has a definite volume | Fills the volume of the container |
| Arrangement of Particles | Fixed, very close | Random, close | Random, far apart |
| Interaction between Particles | Very strong | Strong | Essentially none |
| Movement of Particles | Very slow | Moderate | Very fast |
| Examples | Ice, salt, iron | Water, oil, vinegar | Water vapor, helium, air |

## Learning Check

Identify each description as that of particles of a

1) solid 2) liquid 3 ) gas
__ A. has definite volume but takes the shape of the container
B. particles are moving rapidly
C. particles fill the entire volume of a container
D. particles have a fixed arrangement
E. particles are close together but moving randomly

## Solution

Identify each description as that of particles of a

1) solid 2) liquid 3) gas
A. 2) liquid has definite volume, but takes the shape of the container
B. 3) gas particles are moving rapidly
C. 3) gas particles fill the entire volume of a container
D. 1) solid particles have a fixed arrangement
E. 2) liquid particles are close together, but moving randomly

## Learning Check

Identify the state of matter for each of the following:
A. vitamin tablets
B. eye drops
C. vegetable oil
D. a candle
E. air in a basketball

## Solution

Identify the state of matter for each of the following:
A. vitamin tablets solid
B. eye drops
C. vegetable oil
liquid
liquid
D. a candle
solid
E. air in a basketball
gas

## Physical Properties

## Physical properties

- are characteristics observed or measured without changing the identity of a substance.
- include the shape, physical state, boiling and freezing points, density, and color of that substance.


## Physical Properties of Copper

Copper has these physical properties:

- reddish-orange color
- shiny
- excellent conductor of heat and electricity
- solid at $25^{\circ} \mathrm{C}$
- melting point $1083{ }^{\circ} \mathrm{C}$
- boiling point $2567^{\circ} \mathrm{C}$


Copper, used in cookware, is a good conductor of heat.

## Physical Changes

Physical changes occur when matter undergoes a physical change of state, but its composition remains constant.

Water exists in three states: (1) ice, (2) water, and (3) steam.

## Physical Changes

The physical appearance of a substance can also change with a physical change.

For example, when salt is dissolved in water, the salt crystals are no longer visible but can be re-formed when the water evaporates.

A gold ingot undergoes a physical change when it is hammered to form gold leaf.


## Learning Check

Classify each of the following as a

1) change of state 2) change of shape
A. chopping a log into kindling
B. water boiling in a pot
C. ice cream melting
D. ice forming in a freezer
E. cutting dough into strips

## Solution

Classify each of the following as a

1) change of state 2) change of shape
A. chopping a $\log$ into kindling
2) change of shape
B. water boiling in a pot
3) change of state
C. ice cream melting
4) change of state
D. ice forming in a freezer
E. cutting dough into strips
5) change of state
6) change of shape

## Chemical Properties and Changes

Chemical properties describe the ability of a substance

- to interact with other substances
- to change into a new substance

When a chemical change takes place, the original substance is turned into one or more new substances with new physical and chemical properties.

## Chemical Changes

During a chemical change, a new substance forms that has

- a new composition
- new physical properties
- new chemical properties

For example, when iron nails corrode in the presence of water, a new substance forms on them, a red-orange powder called rust $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$.


Sugar caramelizing at a high temperature is an example of a chemical change.

## Physical and Chemical Changes

## table 3.3 Examples of Some Physical and Chemical Changes

| Physical Changes | Chemical Changes |
| :--- | :--- |
| Water boils to form water vapor. | Shiny, silver metal reacts in air to give a black, grainy <br> coating. |
| Copper is drawn into thin copper wires. | A piece of wood burns with a bright flame and <br> produces heat, ashes, carbon dioxide, and water <br> vapor. |
| Sugar dissolves in water to form a <br> solution. | Heating sugar forms a smooth, caramel-colored <br> substance. |
| Paper is cut into tiny pieces of confetti. | Iron, which is gray and shiny, combines with oxygen <br> to form orange-red rust. |

# Physical and Chemical Properties and Changes 

table 3.4 Summary of Physical and Chemical Properties and Changes

|  | Physical | Chemical |
| :--- | :--- | :--- |
| Property | A characteristic of a substance: color, <br> shape, odor, luster, size, melting <br> point, or density. | A characteristic that indicates the <br> ability of a substance to form another <br> substance: paper can burn, iron can <br> rust, silver can tarnish. |
| Change | A change in a physical property that <br> retains the identity of the substance: <br> a change of state, a change in size, or <br> a change in shape. | A change in which the original <br> substance is converted to one or more <br> new substances: paper burns, iron <br> rusts, silver tarnishes. |

## Learning Check

Classify each of the following properties as physical or chemical:
A. Ice melts in the sun.
B. Copper is a shiny metal.
C. Paper can burn.
D. A silver knife can tarnish.
E. A magnet removes iron particles from a mixture.

## Solution

Classify each of the following properties as physical or chemical:
A. Ice melts in the sun.
B. Copper is a shiny metal.
C. Paper can burn.
D. A silver knife can tarnish.
E. A magnet removes iron particles from a mixture.
physical
physical
chemical
chemical
physical

## Learning Check

Classify each of the following changes as physical or chemical:
A. burning a candle
B. ice melting on the street
C. toasting a marshmallow
D. cutting a pizza
E. iron rusting in an old car

## Solution

Classify each of the following changes as physical or chemical:
A. burning a candle
B. ice melting on the street
C. toasting a marshmallow
D. cutting a pizza
E. iron rusting in an old car
chemical
physical
chemical
physical
chemical

### 3.3 Temperature

A digital ear thermometer is used to measure body temperature.


Learning Goal Given a temperature, calculate the corresponding temperature on another scale.

## Temperature

## Temperature

- is a measure of how hot or cold an object is compared to another object
- is measured using a thermometer
- is measured and reported in Celsius $\left({ }^{\circ} \mathrm{C}\right)$ units in science



## CORE CHEMISTRY SKILL 44

## Temperature Scales

Converting between Tempera-
ture Scales

## The temperature scales

- are Fahrenheit, Celsius, and Kelvin
- have reference points for the boiling and freezing points of water



## Fahrenheit and Celsius Scales

- On the Celsius scale, there are 100 degrees Celsius between the freezing and boiling points of water.
- On the Fahrenheit scale, there are 180 degrees Fahrenheit between the freezing and boiling points of water.
- 180 Fahrenheit degrees $=100$ degrees Celsius

$$
\frac{180 \text { Fahrenheit degrees }}{100 \text { degrees Celsius }}=\frac{1.8^{\circ} \mathrm{F}}{1{ }^{\circ} \mathrm{C}}
$$

## Learning Check

A. What is the temperature at which water freezes?

1) $0{ }^{\circ} \mathrm{F}$
2) $0{ }^{\circ} \mathrm{C}$
3) 0 K
B. What is the temperature at which water boils?
4) $100{ }^{\circ} \mathrm{F}$
5) $32{ }^{\circ} \mathrm{F}$
6) 373 K
C. How many Celsius units are between the boiling and freezing points of water?
7) 100
8) 180
9) 273

## Solution

A. What is the temperature at which water freezes?
2) $0^{\circ} \mathrm{C}$
B. What is the temperature at which water boils?
3) 373 K
C. How many Celsius units are between the boiling and freezing points of water?

1) $\mathbf{1 0 0}$

## Converting Between ${ }^{\circ}$ F to ${ }^{\circ} \mathrm{C}$

We can write equations that relate these two scales.
To obtain ${ }^{\circ} \mathrm{F}$ from ${ }^{\circ} \mathrm{C}$ :

$$
\begin{aligned}
& T_{\mathrm{F}}= 1.8\left(T_{\mathrm{C}}\right)+32 \quad \text { Temperature equation to obtain degrees Fahrenheit } \\
& \begin{array}{c}
\text { Changes }
\end{array} \\
&{ }^{\circ} \mathrm{C} \text { to }{ }^{\circ} \mathrm{F} \text { Adjusts } \text { freezing } \\
& \text { point }
\end{aligned}
$$

To obtain ${ }^{\circ} \mathrm{C}$ from ${ }^{\circ} \mathrm{F}$ :

$$
\begin{aligned}
& \frac{T_{\mathrm{F}}-32}{1.8}=\frac{1.8\left(T_{\mathrm{C}}\right)}{1.8} \\
& \frac{T_{\mathrm{F}}-32}{1.8}=T_{\mathrm{C}} \quad \text { Temperature equation to obtain degrees Celsius }
\end{aligned}
$$

## Solving a Temperature Problem

Example: The typical temperature in a room is $21^{\circ} \mathrm{C}$. What is that temperature in degrees Fahrenheit?

STEP 1 State the given and needed quantities.

| ANALYZE | Given | Need | Connect |
| :--- | :--- | :--- | :--- |
| THE PROBLEM | $21^{\circ} \mathrm{C}$ | $T$ in ${ }^{\circ} \mathrm{F}$ | temperature equation |

STEP 2 Write a temperature equation.

$$
T_{\mathrm{F}}=1.8\left(T_{\mathrm{C}}\right)+32
$$

## Solving a Temperature Problem

Example: The typical temperature in a room is $21^{\circ} \mathrm{C}$. What is that temperature in degrees Fahrenheit?

STEP 3 Substitute in the known values and calculate the new temperature.

$$
T_{\mathrm{F}}=1.8(21)+32
$$

1.8 is exact; 32 is exact

$$
T_{\mathrm{F}}=38+32=70 .{ }^{\circ} \mathrm{F} \quad \text { Answer to the ones place }
$$

## Kelvin Temperature Scale

Scientists have learned that the coldest temperature possible is $-273{ }^{\circ} \mathrm{C}$. On the Kelvin scale, this is called absolute zero and is represented as 0 K .
The Kelvin scale has

- units called kelvins (K)
- no degree symbol in front of K to represent temperature
- no negative temperatures
- the same size units as Celsius $1 \mathrm{~K}=1{ }^{\circ} \mathrm{C}$

$$
T_{\mathrm{K}}=T_{\mathrm{C}}+273 \text { Temperature equation to obtain kelvins }
$$

## Learning Check

What is normal body temperature of $37^{\circ} \mathrm{C}$ in kelvins?
A. 236 K
B. 310 K
C. 342 K
D. 98.0 K

## Solution

What is normal body temperature of $37^{\circ} \mathrm{C}$ in kelvins?

STEP 1 State the given and needed quantities.

| ANALYZE | Given | Need | Connect <br> THE PROBLEM <br> $37^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- |
| temperature equation |  |  |  |

STEP 2 Write a temperature equation.

$$
T_{\mathrm{K}}=T_{\mathrm{C}}+273
$$

## Solution

What is normal body temperature of $37^{\circ} \mathrm{C}$ in kelvins?
STEP 3 Substitute in the known values and calculate the new temperature.

$$
T_{\mathrm{K}}=37+273
$$

$T_{\mathrm{K}}=310 . \mathrm{K} \quad$ Answer is B.

## Learning Check

On a cold winter day, the temperature is $-15^{\circ} \mathrm{F}$. What is that temperature in degrees Celsius?
A. $-85^{\circ} \mathrm{C}$
B. $-47^{\circ} \mathrm{C}$
C. $-42^{\circ} \mathrm{C}$
D. $-26^{\circ} \mathrm{C}$

## Solution

On a cold winter day, the temperature is $-15^{\circ} \mathrm{F}$. What is that temperature in degrees Celsius?

STEP 1 State the given and needed quantities.

| ANALYZE | Given | Need | Connect |
| :--- | :--- | :--- | :--- |
| THE PROBLEM | $-15^{\circ} \mathrm{F}$ | $T$ in ${ }^{\circ} \mathrm{C}$ | temperature equation |

STEP 2 Write a temperature equation.

$$
T_{\mathrm{C}}=\frac{T_{\mathrm{F}}}{1.8} \frac{-32}{1.8}
$$

## Solution

On a cold winter day, the temperature is $-15^{\circ} \mathrm{F}$. What is that temperature in degrees Celsius?

## STEP 3 Substitute in the known values and calculate the new temperature.

$$
T_{\mathrm{C}}=\frac{(-5-32)}{1.8}
$$

$$
T_{\mathrm{C}}=\frac{-47}{1.8}=-26^{\circ} \mathrm{C} \quad \text { Answer to the ones place }
$$ Answer is D.

## Temperature Comparisons

table 3.5 A Comparison of Temperatures

| Example | Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$ | Celsius $\left({ }^{\circ} \mathrm{C}\right)$ | Kelvin (K) |
| :--- | :---: | :---: | :---: |
| Sun | 9937 | 5503 | 5776 |
| A hot oven | 450 | 232 | 505 |
| Water boils | 212 | 100 | 373 |
| A high fever | 104 | 40 | 313 |
| Normal body temperature | 98.6 | 37.0 | 310 |
| Room temperature | 70 | 21 | 294 |
| Water freezes | 32 | 0 | 273 |
| A northern winter | -66 | -54 | 219 |
| Nitrogen liquefies | -346 | -210 | 63 |
| Absolute zero | -459 | -273 | 0 |

## Chemistry Link to Health

## Variation in Body Temperature

Body temperatures above $41^{\circ} \mathrm{C}$, called hyperthermia, can lead to convulsions and may cause permanent brain damage.
Heatstroke occurs above $41.1^{\circ} \mathrm{C}$.
Treatment may include immersing the person in an ice-water bath.

## Chemistry Link to Health

## Variation in Body Temperature

In hypothermia, body temperature can drop as low as $28.5^{\circ} \mathrm{C}$. Treatment involves providing oxygen and increasing blood volume with glucose and saline fluids. Injecting warm fluids ( $37.0^{\circ} \mathrm{C}$ ) into the peritoneal cavity may restore the internal temperature.

## Learning Check

A person with hypothermia has a body temperature of $34.8^{\circ} \mathrm{C}$. What is that temperature in degrees Fahrenheit?

## Solution

A person with hypothermia has a body temperature of $34.8^{\circ} \mathrm{C}$. What is that temperature in degrees Fahrenheit?

## STEP 1 State the given and needed quantities.

| ANALYZE | Given | Need | Connect <br> THE PROBLEM <br> $34.8{ }^{\circ} \mathrm{C}$ <br> $T$ in ${ }^{\circ} \mathrm{F}$ |
| :--- | :--- | :--- | :--- |
| temperature equation |  |  |  |

STEP 2 Write a temperature equation.

$$
T_{\mathrm{F}}=1.8\left(T_{\mathrm{C}}\right)+32
$$

## Solution

A person with hypothermia has a body temperature of $34.8^{\circ} \mathrm{C}$. What is that temperature in degrees Fahrenheit?

## STEP 3 Substitute in the known values and calculate the new temperature.

$$
\begin{array}{l|l}
T_{\mathrm{F}}=1.8(34.8)+32 \quad 1.8 \text { is exact; } 32 \text { is exact }
\end{array}
$$

$$
T_{\mathrm{F}}=62.6+32=94.6^{\circ} \mathrm{F} \quad \text { Answer to the tenths place }
$$

### 3.4 Energy

A defibrillator provides electrical energy to heart muscle to reestablish normal rhythm.


## Learning Goal Identify energy as potential or kinetic; convert between units of energy.

## Energy

## Energy

- is defined as the ability to do work
- can be classified as either kinetic or potential energy

Kinetic energy is the energy of motion.
Potential energy is determined by the position of an object or its chemical composition.

## Potential or Kinetic Energy?

Water in a reservoir behind a dam has potential energy.
When the water is released and flows over the dam, its potential energy is converted to kinetic energy.


## Learning Check

Identify the energy in each example as potential or kinetic.
A. rollerblading
B. a peanut butter and jelly sandwich
C. mowing the lawn
D. gasoline in the gas tank

## Solution

Identify the energy in each example as potential or kinetic.
A. rollerblading
B. a peanut butter and jelly sandwich
C. mowing the lawn
D. gasoline in the gas tank
kinetic
potential
kinetic
potential

## Heat and Units of Energy, Joules

## Heat is

- the energy associated with the motion of particles
- the faster the particles move, the greater the heat or thermal energy of the substance

The SI unit of energy and work is the joule (J).
$1 \mathrm{~kJ}=1000 \mathrm{~J}$

## Energy Comparison

table 3.6 A Comparison of Energy for Various Resources and Uses

| Energy in Joules |  |
| :---: | :---: |
| $10^{27}$ | -Energy radiated by the Sun in $1 \mathrm{~s}\left(10^{26}\right)$ |
| $10^{24}$ | - World reserves of fossil fuel ( $10^{23}$ ) |
| $10^{21}$ | -Energy consumption for 1 yr in the United States $\left(10^{20}\right)$ |
| $10^{18}$ | -Solar energy reaching Earth in $1 \mathrm{~s}\left(10^{17}\right)$ |
| $10^{15}$ |  |
| $10^{12}$ | -Energy use per person in 1 yr in the United States ( $10^{11}$ ) |
| $10^{9}$ | -Energy from 1 gal of gasoline ( $10^{8}$ ) |
| $10^{6}$ | -Energy from one serving of pasta, a doughnut, or needed to bicycle for $1 \mathrm{~h}\left(10^{6}\right)$ |
| $10^{3}$ | Energy used to sleep for $1 \mathrm{~h}\left(10^{5}\right)$ |
| $10^{0}$ |  |

## Heat and Units of Energy, Calories

The unit calorie is defined as the amount of energy needed to raise the temperature of 1 g of water by $1^{\circ} \mathrm{C}$.

$$
1 \mathrm{cal}=4.184 \mathrm{~J} \text { (exact) } \frac{4.184 \mathrm{~J}}{1 \mathrm{cal}} \text { and } \frac{1 \mathrm{cal}}{4.184 \mathrm{~J}}
$$

1 kilocalorie (kcal) = 1000 calories (cal)
1 Calorie (kcal) = 1000 calories (cal)

## Learning Check

How many calories are obtained from a pat of butter if it provides $\mathbf{1 5 0} \mathbf{J}$ of energy when metabolized?
A. 0.86 cal
B. 630 cal
C. 36 cal

## Solution

How many calories are obtained from a pat of butter if it provides 150 J of energy when metabolized?

STEP 1 State the given and needed quantities.

| ANALYZE | Given | Need | Connect |
| :--- | :--- | :--- | :--- |
| THE PROBLEM | 150 J | calories | energy factor |

STEP 2 Write a plan to convert the given unit to the needed unit.
joules $\begin{gathered}\text { Energy } \\ \text { factor }\end{gathered}$ calories

## Solution

How many calories are obtained from a pat of butter if it provides 150 J of energy when metabolized?

STEP 3 Substitute in the known values and calculate the new temperature.

$$
\begin{gathered}
1 \mathrm{cal}=4.184 \mathrm{~J} \\
\frac{4.184 \mathrm{~J}}{1 \mathrm{cal}} \text { and } \frac{1 \mathrm{cal}}{4.184 \mathrm{~J}}
\end{gathered}
$$

STEP 4 Set up the problem to calculate the needed quantity.

Exact

Answer is C.

$$
\underset{2 \mathrm{SFs}}{150 \delta \times \frac{1 \mathrm{cal}}{4.18 \mathrm{E}^{\prime} \delta}}=\underset{2 \mathrm{SFs}}{36 \mathrm{cal}}
$$

### 3.5 Energy and Nutrition

One hour of swimming uses 2100 kJ of energy.


Learning Goal Use the energy values to calculate the kilocalories (kcal) or kilojoules (kJ) for a food.

## Energy and Nutrition

Carbohydrates are the body's primary source of energy; however, when carbohydrate reserves are exhausted, fats and then proteins are used for energy.

Primary Fuel
Carbohydrates $\square$ Fats $\square$ Proteins

## Energy and Nutrition

On food labels, energy is shown as the nutritional Calorie, written with a capital C. In countries other than the United States, energy is shown in kilojoules (kJ).

$$
\begin{aligned}
& 1 \mathrm{Cal}=1 \mathrm{kcal}=1000 \text { calories } \\
& 1 \mathrm{Cal}=4.184 \mathrm{~kJ}=4184 \mathrm{~J}
\end{aligned}
$$

## Smack Chackens

| Nutrition Facts |  |
| :---: | :---: |
| Serving Size 14 crackers (31g) |  |
|  |  |
| Amount Per Serving |  |
| Calories 130 Calories from | Calories from Fat 40 |
| Kilojoules 500 kJ from Fat | kJ from Fat 150 |
|  | \% Daily Value ${ }^{\text {s }}$ |
| Total Fat 4 g | 6\% |
| Saturated Fat 0.5 g | t $0.5 \mathrm{~g} \quad 3 \%$ |
| Trans Fat 0 g |  |
| Polyunsaturated Fat 0.5\% | ated Fat 0.5\% |
| Monounsaturated Fat 1.5g | rated Fat 1.5 g |
| Cholesterol 0 mg | mg $0 \%$ |
| Sodium 310 mg | gg |
| Total Carbohydrate 19 g | drate $19 \mathrm{~g} \quad 6 \%$ |
| Dietary Fiber Less than 1 g | Less than 1 g . $4 \%$ |
| Sugars 2g |  |
| Proteins 2g |  |

## Calorimeters Measure Energy Values

Heat released from burning a food sample in a calorimeter is used to determine the energy value for the food.


## Food Energy Values

The energy values for the three food types are given in $\mathrm{kcal} / \mathrm{g}$ and $\mathrm{kJ} / \mathrm{g}$.
TABLE 3.7 Typical Energy Values
for the Three Food

| Food Types | $\mathrm{kcal} / \mathrm{g}$ | $\mathrm{kJ} / \mathrm{g}$ |
| :--- | :---: | :---: |
| Carbohydrate | 4 | 17 |
| Fat | 9 | 38 |
| Protein | 4 | 17 |

## Food Energy Values

We can use the energy values given in Table 3.7 to calculate the energy from a food type when its mass is known.

$$
\begin{aligned}
& \text { kilocalories }=g \times \frac{\mathrm{kcal}}{g} \\
& \text { kilojoules }=g \times \frac{\mathrm{kJ}}{g}
\end{aligned}
$$

## Energy Values for Some Foods

table 3.8 Composition and Energy Content for Some Foods

| Food | Carbohydrate (g) | Fat (g) | Protein (g) | Energy |
| :--- | :---: | :---: | :---: | :---: |
| Apple, 1 medium | 15 | 0 | 0 | $60 \mathrm{kcal}(260 \mathrm{~kJ})$ |
| Banana, 1 medium | 26 | 0 | 1 | $110 \mathrm{kcal}(460 \mathrm{~kJ})$ |
| Beef, ground, 3 oz 85 g | 0 | 14 | 22 | $220 \mathrm{kcal}(900 \mathrm{~kJ})$ |
| Broccoli, 3 oz | 4 | 0 | 3 | $30 \mathrm{kcal}(120 \mathrm{~kJ})$ |
| Carrots, 1 cup | 11 | 0 | 2 | $50 \mathrm{kcal}(220 \mathrm{~kJ})$ |
| Chicken, no skin, 3 oz | 0 | 3 | 20 | $110 \mathrm{kcal}(450 \mathrm{~kJ})$ |
| Egg, 1 large | 0 | 6 | 6 | $70 \mathrm{kcal}(330 \mathrm{~kJ})$ |
| Milk, nonfat, 1 cup | 12 | 0 | 9 | $90 \mathrm{kcal}(350 \mathrm{~kJ})$ |
| Potato, baked | 23 | 0 | 3 | $100 \mathrm{kcal}(440 \mathrm{~kJ})$ |
| Salmon, 3 oz | 0 | 5 | 16 | $110 \mathrm{kcal}(460 \mathrm{~kJ})$ |
| Steak, 3 oz | 0 | 27 | 19 | $320 \mathrm{kcal}(1350 \mathrm{~kJ})$ |

## Learning Check

A cup of whole milk contains 12 g of carbohydrate, 9 g of fat, and 9 g of protein. How many kilocalories does a cup of whole milk contain? (Round off the answer for each food type to the tens place.)

## Solution

A cup of whole milk contains 12 g of carbohydrate, 9 g of fat, and 9 g of protein. How many kilocalories does a cup of whole milk contain? (Round off the answer for each food type to the tens place.)

STEP 1 State the given and needed quantities.

| ANALYZE | Given | Need | Connect |
| :--- | :--- | :--- | :---: |
| THE PROBLEM | 12 g of carbohydrate | total number | energy |
|  | 9 g of fat | of kilocalories | values |
|  | 9 g of protein |  |  |

## Solution

A cup of whole milk contains 12 g of carbohydrate, 9 g of fat, and 9 g of protein. How many kilocalories does a cup of whole milk contain? (Round off the answer for each food type to the tens place.)

STEP 2 Use the energy value for each food type to calculate the kilocalories, rounded off to the tens place.

12 g carbohydrate $\times 4 \mathrm{kcal} / \mathrm{g}=50 \mathrm{kcal}$
9 g fat $\times 9 \mathrm{kcal} / \mathrm{g}=80 \mathrm{kcal}$
9 g protein $\times 4 \mathrm{kcal} / \mathrm{g}=40 \mathrm{kcal}$

## Solution

A cup of whole milk contains 12 g of carbohydrate, 9 g of fat, and 9 g of protein. How many kilocalories does a cup of whole milk contain? (Round off the answer for each food type to the tens place.)

## STEP 3 Add the energy for each food type to give the total energy from the food.

Total energy $=50 \mathrm{kcal}+80 \mathrm{kcal}+40 \mathrm{kcal}=170 \mathrm{kcal}$

# Chemistry Link to Health <br> <br> Losing and Gaining Weight 

 <br> <br> Losing and Gaining Weight}

The number of kilocalories or kilojoules needed in the daily diet of an adult depends on gender, age, and level of physical activity.
tABLE 3.9 Typical Energy Requirements for Adults

| Gender | Age | Moderately Active <br> kcal (kJ) | Highly Active <br> kcal (kJ) |
| :--- | :--- | :--- | :--- |
| Female | $19-30$ | $2100(8800)$ | $2400(10000)$ |
|  | $31-50$ | $2000(8400)$ | $2200(9200)$ |
| Male | $19-30$ | $2700(11300)$ | $3000(12600)$ |
|  | $31-50$ | $2500(10500)$ | $2900(12100)$ |

TABLE 3.10 Energy Expended by a $70.0-\mathrm{kg}$
(154-lb) Adult

| Activity | Energy (kcal/h) | Energy (kJ/h) |
| :--- | :---: | :---: |
| Sleeping | 60 | 250 |
| Sitting | 100 | 420 |
| Walking | 200 | 840 |
| Swimming | 500 | 2100 |
| Running | 750 | 3100 |

### 3.6 Specific Heat

The high specific heat of water keeps temperature more moderate in summer and winter.


## Learning Goal Use specific heat to calculate heat loss or gain.

## Specific Heat

## Specific heat (SH)

- is different for different substances
- is the amount of heat needed to raise the temperature of exactly 1 g of a substance by exactly $1^{\circ} \mathrm{C}$
- has units of $\mathrm{J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ in the SI system and of $\mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$ in the metric system

$$
\begin{aligned}
& \begin{array}{l}
\text { Specific } \\
\text { heat }(S H)
\end{array}=\frac{\text { heat }}{\text { mass } \Delta T}=\frac{\operatorname{cal}(\text { or J) }}{\mathrm{g}^{\circ} \mathrm{C}} \\
& S H \text { for } \mathrm{H}_{2} \mathrm{O}(l)=\frac{1.00 \mathrm{cal}}{\mathrm{~g}^{\circ} \mathrm{C}}=\frac{4.184 \mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}
\end{aligned}
$$

## Calculating Specific Heat

Example: What is the specific heat if 24.8 g of a metal absorbs 275 J of energy and the temperature rises from $20.2^{\circ} \mathrm{C}$ to $24.5^{\circ} \mathrm{C}$ ?

## Solution

Example: What is the specific heat if 24.8 g of a metal absorbs 275 J of energy and the temperature rises from $20.2^{\circ} \mathrm{C}$ to $24.5^{\circ} \mathrm{C}$ ?

STEP 1 State the given and needed quantities.

| ANALYZE | Given | Need | Connect |
| :--- | :--- | :--- | :--- |
| THE PROBLEM | 24.8 g metal | specific heat | temperature change, <br> specific heat |
|  | 275 J energy |  |  |

STEP 2 Calculate the temperature change ( $\Delta T$ ).

$$
\Delta T=24.5^{\circ} \mathrm{C}-20.2^{\circ} \mathrm{C}=4.3^{\circ} \mathrm{C}
$$

## Solution

Example: What is the specific heat if 24.8 g of a metal absorbs 275 J of energy and the temperature rises from $20.2^{\circ} \mathrm{C}$ to $24.5^{\circ} \mathrm{C}$ ?

STEP 3 Write the relationship for specific heat.

$$
S H=\frac{\text { heat }}{m \times \Delta T}
$$

STEP 4 Substitute in the given values and calculate the specific heat.

$$
S H=\frac{275 \mathrm{JFs}}{24.8 \mathrm{~g} \times 4.3^{\circ} \mathrm{C}}=\frac{2.6 \mathrm{~J}}{3 \mathrm{SFs}} \frac{2 \mathrm{SFs}}{\mathrm{~g}{ }^{\circ} \mathrm{C}}{ }_{2 \mathrm{SFs}}
$$

## Specific Heats for Some Substances

table 3.11 Specific Heats for Some Substances

| Substance | $\mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$ | $\mathrm{J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |
| Elements |  |  |
| Aluminum, $\mathrm{Al}(s)$ | 0.214 | 0.897 |
| $\mathrm{Copper}, \mathrm{Cu}(s)$ | 0.0920 | 0.385 |
| $\mathrm{Gold}, \mathrm{Au}(s)$ | 0.0308 | 0.129 |
| Iron, $\mathrm{Fe}(s)$ | 0.108 | 0.452 |
| Silver, $\mathrm{Ag}(s)$ | 0.0562 | 0.235 |
| Titanium, $\mathrm{Ti}(s)$ | 0.125 | 0.523 |
| Compounds |  |  |
| Ammonia, $\mathrm{NH}(g)$ | 0.488 | 2.04 |
| Ethanol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}(l)$ | 0.588 | 2.46 |
| Sodium $\mathrm{chloride}^{\mathrm{N}} \mathrm{NaCl}(s)$ | 0.207 | 0.864 |
| Water, $\mathrm{H}_{2} \mathrm{O}(l)$ | 1.00 | 4.184 |
| Water, $\mathrm{H}_{2} \mathrm{O}(s)$ | 0.485 | 2.03 |

## Specific Heat of Liquid Water

Because of the high specific heat of water, a large mass of water near a coastal city can absorb or release five times the energy absorbed or released by the same amount of rock near an inland city.


## Learning Check

1. When ocean water cools, the surrounding air
A. cools
B. warms
C. stays the same
2. Sand in the desert is hot in the day and cool at night. Sand must have a
A. low specific heat
B. high specific heat

## Solution

1. When ocean water cools, the surrounding air
B. warms
2. Sand in the desert is hot in the day and cool at night. Sand must have a
A. low specific heat

## Calculations Using Specific Heat

When we know the specific heat of a substance, we can

- rearrange the specific heat expression to give the heat equation
- calculate the heat lost or gained by a given mass of the substance over a certain temperature change

```
Heat \(=\) mass \(\times\) temperature change \(\times\) specific heat
Heat \(=m \quad \times \quad \Delta T \quad \times \quad S H\)
    cal \(=g \quad \times \quad{ }^{\circ} \ell\)
    \(\mathrm{J}=\mathrm{g} \quad \times \quad{ }^{\circ} \mathrm{Z}\)
    \(\times \frac{\mathrm{J}}{g^{\circ} \ell}\)
```


## Using the Heat Equation

Example: Use the heat equation to calculate the energy, in kJ , needed to heat 255 g of copper from $24^{\circ} \mathrm{C}$ to $185^{\circ} \mathrm{C}$.

## Solution

Example: Use the heat equation to calculate the energy, in kJ , needed to heat 255 g of copper from $24^{\circ} \mathrm{C}$ to $185^{\circ} \mathrm{C}$.

STEP 1 State the given and needed quantities.

| ANALYZE | Given | Need | Connect |
| :--- | :--- | :--- | :--- |
| THE PROBLEM | 255 g of copper | joules | heat equation, |
|  | $T_{\text {initial }}=24^{\circ} \mathrm{C}$ |  | specific heat |
|  | $T_{\text {final }}=185^{\circ} \mathrm{C}$ |  | of copper |

STEP 2 Calculate the temperature change ( $\Delta T$ ).

$$
\Delta T=185^{\circ} \mathrm{C}-24^{\circ} \mathrm{C}=161^{\circ} \mathrm{C}
$$

## Solution

Example: Use the heat equation to calculate the energy, in kJ , needed to heat 255 g of copper from $24^{\circ} \mathrm{C}$ to $185^{\circ} \mathrm{C}$.

STEP 3 Write the heat equation and needed conversion factors.

$$
\text { Heat }=m \times \Delta T \times S H \quad S H_{\text {copper }}=\frac{0.385 \mathrm{~J}}{\mathrm{~g}{ }^{\circ} \mathrm{C}}
$$

STEP 4 Substitute in the given values and calculate the heat, making sure units cancel.

$$
\text { Heat }=\underset{3 \mathrm{SFs}}{255 \mathrm{~g} \times 161{ }^{\circ} \mathrm{C} \times \frac{\begin{array}{c}
3 \mathrm{SFs} \\
0.385 \mathrm{JFs}
\end{array}}{\mathrm{~g}{ }^{\circ} \mathrm{C}} \times \frac{\begin{array}{c}
\text { Exact } \\
1 \mathrm{~kJ}
\end{array}}{\underset{\text { Exact }}{1000 \mathrm{~J}}}=15.8 \mathrm{~kJ} \text { 3 SFs }}
$$

### 3.7 Changes of State

Changes of state include melting and freezing, boiling and condensation, and sublimation and deposition.


Learning Goal Describe the changes of state between solids, liquids, and gases; calculate the energy released or absorbed.

## Changes of State

Matter undergoes a change of state when it is converted from one state to another state at a constant temperature.


## Melting and Freezing

## A substance

- is melting while it changes from a solid to a liquid at its melting point (mp)
- is freezing while it changes from a liquid to a solid at its freezing point (fp)
Water has a freezing (melting) point of $0^{\circ} \mathrm{C}$.


Melting and freezing are reversible processes.

## Heat of Fusion

The heat of fusion is the energy that must be added to convert exactly 1 g of solid to a liquid at its melting point.

For $\mathrm{H}_{2} \mathrm{O}, 80$. cal (334 J) of heat is needed to melt 1 g of ice at its melting point $\left(0^{\circ} \mathrm{C}\right)$.

$$
\mathrm{H}_{2} \mathrm{O}(s)+80 . \mathrm{cal} / \mathrm{g}(334 \mathrm{~J} / \mathrm{g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)
$$

## Heat of Fusion

The heat of fusion is also the quantity of heat that must be removed to convert exactly 1 g of liquid to a solid at its freezing point.

For $\mathrm{H}_{2} \mathrm{O}, 80$. cal (334 J) of heat is removed to freeze 1 g of water at its freezing point $\left(0^{\circ} \mathrm{C}\right)$.

$$
\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(s)+80 . \mathrm{cal} / \mathrm{g}(334 \mathrm{~J} / \mathrm{g})
$$

## Heat of Fusion, $\mathrm{H}_{2} \mathrm{O}$

The heat of fusion for water can be used as a conversion factor.
$1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(s \rightarrow l)=80$. cal (334 J)
$\frac{80 . \mathrm{cal}}{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}$ and $\frac{1 \mathrm{~g} \mathrm{H}}{2} \mathrm{O} \quad \frac{334 \mathrm{~J}}{80 . \mathrm{cal}} \quad$ and $\frac{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{334 \mathrm{~J}}$
When calculating the heat needed to melt (or released when freezing) water, we use the following equation:

Heat $=$ mass $\times$ heat of fusion

$$
\mathrm{cal}=q \times \frac{80 \cdot \mathrm{cal}}{q} \quad \mathrm{~J}=q \times \frac{334 \mathrm{~J}}{q}
$$

## Learning Check

How many kilojoules are needed to melt 32.0 g of ice at $0^{\circ} \mathrm{C}$ ?

## Solution

How many kilojoules are needed to melt 32.0 g of ice at $0^{\circ} \mathrm{C}$ ?
STEP 1 State the given and needed quantities.


## STEP 2 Write a plan to convert the given quantity to the needed quantity.



## Solution

How many kilojoules are needed to melt 32.0 g of ice at $0^{\circ} \mathrm{C}$ ?

## STEP 3 Write the heat conversion factor and any metric factor.

$$
\begin{array}{rc}
1 \mathrm{~g} \text { of } \mathrm{H}_{2} \mathrm{O}(s \rightarrow l)=334 \mathrm{~J} & 1 \mathrm{~kJ}=1000 \mathrm{~J} \\
\frac{334 \mathrm{~J}}{1 \mathrm{~g} \mathrm{H} \mathrm{O}} & \text { and } \frac{1 \mathrm{~g} \mathrm{H}}{2} \mathrm{O} \\
334 \mathrm{~J} & \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}} \text { and } \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}
\end{array}
$$

## Solution

How many kilojoules are needed to melt 32.0 g of ice at $0^{\circ} \mathrm{C}$ ?

## STEP 4 Set up the problem and calculate the needed quantity. <br> $\begin{gathered}32.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(s)\end{gathered} \frac{334 \mathrm{SFs}^{\prime}}{1 \mathrm{~g}_{\text {Exact }} \mathrm{H}_{2} \mathrm{O}(s)} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}=10.7 \mathrm{~kJ}$

## Sublimation and Deposition

When sublimation occurs,

- the particles on the surface of a solid change directly to a gas without going through the liquid state
- there is no change in temperature

In the reverse process, called deposition, gas particles change directly to a solid.

Dry ice undergoes sublimation.


Sublimation and deposition are reversible processes.

## Evaporation, Boiling, and Condensation

> Evaporation occurs when water molecules gain sufficient energy to escape the liquid surface and enter the gas phase.

During evaporation, molecules of the liquid are converted to gas at the surface of the liquid.


## Evaporation, Boiling, and Condensation

At the boiling point, the molecules have enough energy to overcome their attractive forces and become a gas.


Boiling occurs as bubbles of gas form throughout the liquid.

## Evaporation, Boiling, and Condensation



Vaporization and condensation are reversible processes.

## Heat of Vaporization

The heat of vaporization is the amount of heat

- absorbed to change 1 g of liquid to gas at the boiling point
- released when 1 g of gas changes to liquid at the boiling point

For $\mathrm{H}_{2} \mathrm{O}, 540 \mathrm{cal}(2260 \mathrm{~J})$ of heat is needed to convert 1 g of water to steam (vapor) at $100^{\circ} \mathrm{C}$.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+540 \mathrm{cal} / \mathrm{g}(2260 \mathrm{~J} / \mathrm{g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g)
$$

## Heat of Condensation

This same amount of heat is released when 1 g of water vapor (gas) changes to liquid at $100^{\circ} \mathrm{C}$.
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+540 \mathrm{cal} / \mathrm{g}(2260 \mathrm{~J} / \mathrm{g})$

Therefore, $540 \mathrm{cal} / \mathrm{g}$ or $2260 \mathrm{~J} / \mathrm{g}$ is also the heat of condensation of water.

## Heat of Vaporization, $\mathbf{H}_{2} \mathbf{O}$

The heat of vaporization (condensation) for water can be used as a conversion factor.

$$
\begin{aligned}
& 1 \mathrm{~g} \text { of } \mathrm{H}_{2} \mathrm{O}(l \rightarrow g)=540 \mathrm{cal}(2260 \mathrm{~J}) \\
& \frac{540 \mathrm{cal}}{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \text { and } \frac{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{540 \mathrm{cal}} \quad \frac{2260 \mathrm{~J}}{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \text { and } \frac{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{2260 \mathrm{~J}}
\end{aligned}
$$

When calculating the heat needed to vaporize (or released when condensing) water, we use the following equation:
Heat $=$ mass $\times$ heat of vaporization

$$
\mathrm{cal}=g \times \frac{540 \mathrm{cal}}{q} \quad \mathrm{~J}=q \times \frac{2260 \mathrm{~J}}{q}
$$

## Learning Check

How many kilojoules are released when 50.0 g of steam from a volcano condenses at $100^{\circ} \mathrm{C}$ ?

## Solution

How many kilojoules are released when 50.0 g of steam from a volcano condenses at $100^{\circ} \mathrm{C}$ ?

STEP 1 State the given and needed quantities.

| ANALYZE |  |  |  |
| :--- | :--- | :--- | :--- |
| THE PROBLEM | Given <br> 50.0 g of steam <br> at $100^{\circ} \mathrm{C}$ | Need <br> kilojoules <br> released | Connect <br> heat of <br> condensation |

STEP 2 Write a plan to convert the given quantity to the needed quantity.


## Solution

How many kilojoules are released when 50.0 g of steam from a volcano condenses at $100^{\circ} \mathrm{C}$ ?

## STEP 3 Write the heat conversion factor and any metric factor.

$$
\begin{array}{rc}
1 \mathrm{~g} \text { of } \mathrm{H}_{2} \mathrm{O}(g \rightarrow l)=2260 \mathrm{~J} & 1 \mathrm{~kJ}=1000 \mathrm{~J} \\
\frac{2260 \mathrm{~J}}{1 \mathrm{~g} \mathrm{H}} \mathrm{H}_{2} \mathrm{O} & \text { and } \frac{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{2260 \mathrm{~J}}
\end{array} \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}} \text { and } \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}
$$

## Solution

How many kilojoules are released when 50.0 g of steam from a volcano condenses at $100^{\circ} \mathrm{C}$ ?

STEP 4 Set up the problem and calculate the needed

$$
\begin{aligned}
& \text { quantity. }
\end{aligned}
$$

## Heating Curve

On a heating curve, diagonal lines indicate changes in temperature for a physical state, and horizontal lines (plateaus) indicate changes of state.

A heating curve for water diagrams the temperature increases and changes of state as heat is added.


## Cooling Curve

On a cooling curve, diagonal lines indicate changes in temperature for a physical state, and horizontal lines (plateaus) indicate changes of state.

A cooling curve for water diagrams the temperature increases and changes of state as heat is added.


## Learning Check

1. A plateau (horizontal line) on a heating curve represents
A. a temperature change
B. a constant temperature
C. a change of state
2. A sloped line on a heating curve represents
A. a temperature change
B. a constant temperature
C. a change of state

## Solution

1. A plateau (horizontal line) on a heating curve represents

## B. a constant temperature

C. a change of state
2. A sloped line on a heating curve represents
A. a temperature change

## Learning Check

Use the cooling curve for water to answer each of the following:

1. Water condenses at a temperature of
A. $0{ }^{\circ} \mathrm{C}$
B. $50^{\circ} \mathrm{C}$
C. $100^{\circ} \mathrm{C}$
2. At a temperature of $0{ }^{\circ} \mathrm{C}$, liquid water
A. freezes
B. melts
C. changes to a gas
3. At $40^{\circ} \mathrm{C}$, water is a
A. solid
B. liquid
C. gas
4. When water freezes, heat is
A. removed
B. added

## Solution

Use the cooling curve for water to answer each of the following:

1. Water condenses at a temperature of
C. $100{ }^{\circ} \mathrm{C}$
2. At a temperature of $0^{\circ} \mathrm{C}$, liquid water
A. freezes
3. At $40^{\circ} \mathrm{C}$, water is a
B. liquid
4. When water freezes, heat is
A. removed

## Learning Check

A $175-\mathrm{g}$ sample of steam at $100^{\circ} \mathrm{C}$ is emitted from a volcano. It condenses, cools, and falls as snow at $0.0^{\circ} \mathrm{C}$. How many kilojoules were released?
A. 396 kJ
B. 528 kJ
C. 133 kJ

## Solution

A $175-\mathrm{g}$ sample of steam at $100 .{ }^{\circ} \mathrm{C}$ is emitted from a volcano. It condenses, cools, and falls as snow at $0.0^{\circ} \mathrm{C}$. How many kilojoules were released?

## STEP 1 State the given and needed quantities.

| ANALYZE | Given | Need | Connect |
| :--- | :--- | :--- | :--- |
| THE PROBLEM | 175 g of steam |  |  |
| total heat released |  |  |  |
| at $100 .{ }^{\circ} \mathrm{C}$ | heat of <br> when condense <br> steam at $100 .{ }^{\circ} \mathrm{C}$, | condensation, <br> specific heat |  |
|  |  | sool to $0.0{ }^{\circ} \mathrm{C}$, | of water, heat |
| and freeze to snow | of fusion |  |  |

## Solution

## STEP 2 Write a plan to convert the given quantity to the needed quantity.

Use the cooling curve to determine kilojoules released.


## Solution

STEP 3 Write the heat conversion factors and any metric factor.

| 1 g of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g} \rightarrow l)=2260 \mathrm{~J}$ | $S H_{\mathrm{H}_{2} \mathrm{O}}=\frac{4.184 \mathrm{~J}}{\mathrm{~g}{ }^{\circ} \mathrm{C}}$ |
| :---: | :---: |
| $\frac{2260 \mathrm{~J}}{1 \mathrm{~g} \mathrm{H}} \mathrm{H}_{2} \mathrm{O}$ | and $\frac{1 \mathrm{~g} \mathrm{H}}{2} \mathrm{O}$ |
| 2260 J | $\frac{4.184 \mathrm{~J}}{\mathrm{~g}{ }^{\circ} \mathrm{C}}$ and $\frac{\mathrm{g}^{\circ} \mathrm{C}}{4.184 \mathrm{~J}}$ |
| $1 \mathrm{~g} \mathrm{of} \mathrm{H}_{2} \mathrm{O}(l \rightarrow s)=334 \mathrm{~J}$ | $1 \mathrm{~kJ}=1000 \mathrm{~J}$ |
| $\frac{334 \mathrm{~J}}{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}$ and $\frac{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{334 \mathrm{~J}}$ | $\frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}$ and $\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}$ |

## Solution

STEP 4 Set up the problem and calculate the needed quantity.
(1) Calculate the heat released as steam is condensed:

(2) Calculate temperature change of the liquid:

$$
\Delta T=100 .{ }^{\circ} \mathrm{C}-0.0{ }^{\circ} \mathrm{C}=100 .{ }^{\circ} \mathrm{C}
$$

## Solution

## STEP 4 (continued)

(3) Calculate the heat released as liquid is cooled:

(4) Calculate the heat released as liquid freezes:

$$
175 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(t) \times \frac{3 \mathrm{SFs}}{334 \not \mathrm{SFs}^{\prime}} \underset{\text { Exact }}{1 \mathrm{~g}_{2} \mathrm{O}(l)} \times \frac{1 \mathrm{Exact}}{1000 \mathrm{~kJ}^{\prime}}=58.5 \mathrm{~kJ}
$$

## Solution

## STEP 4 (continued)

Calculate the total energy needed:

| Heat released as steam is condensed | $=396 \mathrm{~kJ}$ |
| :--- | :--- |
| Heat released as liquid is cooled | $=73.2 \mathrm{~kJ}$ |
| Heat released as liquid freezes | $=58.5 \mathrm{~kJ}$ |

Total heat needed $=528 \mathrm{~kJ}$
Answer is B.

## Concept Map



